招聘信息
招收生态与智慧水系统方向的博士后(/info/1034/1532.htm)
简历
北京大学深圳研究生院beat365体育官网平台教授、博士生导师、院长。1996年于清华大学水利水电工程系获学士学位,2001年于北京大学城市与环境学系获博士学位,2001-2002年于香港理工大学土木与结构工程系任研究助理,2002年至今于北京大学深圳研究生院历任讲师、副教授、教授,2008-2010年于英国University of Exeter任“玛丽·居里学者”。通过环境、生态、水文、GIS与遥感、大数据与人工智能等多学科交叉,开展海绵城市与低影响开发、城市内涝与面源污染、河流海洋生态环境、红树林保护与生态修复、智慧水系统等研究。先后主持/参加了国家973项目、国家自然科学基金青年/面上/重点项目、国家水专项、国家重点研发项目、欧盟第七框架计划项目、深圳科技计划项目等,已在国内外重要期刊上发表论文80多篇,出版学术著作3部。
研究方向
l 智慧水系统、洪涝与水环境的AI模拟、融合数据驱动与知识驱动的AI方法
l 河流海洋生态环境、红树林保护与生态修复、面源污染、低影响开发与海绵城市
主要研究项目
l 国家重点研发计划项目《大型运河工程水生态安全保障技术与示范》之课题“大型运河工程廊道生境的生态响应与水生态安全保障技术体系研究”,2023-2027
l 深圳市可持续发展科技专项,城市内涝韧性的时空动态评估、模拟与调控研究,2023-2026
l 国家自然科学基金面上项目,基于稳定同位素技术的生物滞留系统多源氮淋出过程与动态源解析研究,2021-2024
l 深圳市自然科学基金项目,城市易涝点内涝的精细化快速模拟与调控方法研究,2021-2023
l 深圳市基础研究(重点项目),基于生态海绵体的城市面源污染原位控制技术研究,2020-2023
主要学术论文
l Ding, W., Qin, H.P., Wang, F., Xia, C.X. (2024). Leaching sources and mechanisms of different nitrogen species from bioretention systems. Water Research 260(6), https://doi.org/10.1016/j.watres.2024.121911
l Xia, C.X., Ding, W., Yu, S.Q., Wang, F., Fan, W.B., Zhou, F., Qin, H.P. (2024). Tracking the nitrogen leaching from different sources in bioretention systems with a process-based model. Journal of Hydrology. 636, https://doi.org/10.1016/j.jhydrol.2024.131281
l Yu, S.Q., Qin, H.P., (2023). Modeling the effects of plant uptake dynamics on nitrogen removal of a bioretention system. Water Research. 247, https://doi.org/10.1016/j.watres.2023.120763
l Yu, S.Q., He, K.M., Xia, C.X., Qin, H.P. (2023). Modeling the effect of the submerged zone on nitrogen removal efficiency of a bioretention system under dry-wet alterations. Journal of Hydrology. 623, https://doi.org/10.1016/j.jhydrol.2023.129788
l Zhang L., Qin H.P., Mao J.Q., Cao X.Y., Fu G.T. (2023) High temporal resolution urban flood prediction using attention-based LSTM models. Journal of Hydrology. 620, https://doi.org/10.1016/j.jhydrol.2023.129499
l Yu S.Q., Qin H.P., Ding W. (2023). Modeling the effects of vegetation dynamics on the hydrological performance of a bioretention system. Journal of Hydrology. 620, https://doi.org/10.1016/j.jhydrol.2023.129473
l Ding W., Wang F., Qin H.P., Xia C.X. (2023). Source apportionment and controlling mechanisms of nitrogen leaching from bioretention systems. Journal of Environmental Chemical Engineering. 11, https://doi.org/10.1016/j.jece.2023.109819
l Xie, C.Y., Yu, K., Yin, Y.X., Wang, L., Qiu, Z.G., Qin, H.P. (2023) Abundance, diversity and changes to environmental variables of comammox Nitrospira in bioretention system. Journal of Water Process Engineering. 51, https://doi.org/10.1016/j.jwpe.2022.103411
l Li, X., Xia, C., Sun, Y., Ding, W., Qin, H.P. (2022) Characteristics of Nitrifying and Denitrifying Microbes in the Bioretention Cell with Submerged Zone during a Dry Period. Water, 14, 3503. https://doi.org/10.3390/w14213503
l Hu,Y. C., Qin, H.P., Ouyang, Y.M, Yu, S.L. (2022) Seasonal Variation in Recovery Process of Rainwater Retention Capacity for Green Roofs. Water, 14, 2799. https://doi.org/10.3390/w14182799
l Ding,W., Qin, H.P., Yu, S.Q., Yu, S.L. (2022) The overall and phased nitrogen leaching from a field bioretention during rainfall runoff events. Ecological Engineering 179, https://doi.org/10.1016/j.ecoleng.2022.106624
l Zhang, Y.Y,, Qin, H.P., Ye, Y.J., Ding W. (2022).The effect of low impact development facilities on evapotranspiration in an outdoor space of urban buildings. Journal of Hydrology 608, https://doi.org/10.1016/j.jhydrol.2022.127647
l Niu, G., Yang, P., Zheng, Y., Cai, X., & Qin, H. (2021). Automatic quality control of crowdsourced rainfall data with multiple noises: A machine learning approach. Water Resources Research, 57, https://doi.org/10.1029/2020WR029121
l Wang, F.,Wang, C.S., Zhang, Y.Y., Li X.Y., Qin, H.P., Ding, W. (2021). Estimating nitrogen fates and gross transformations in bioretention systems with applications of 15 N labeling methods. Chemosphere, https://doi.org/10.1016/j.chemosphere.2020.129462
l Zhang, Y.Y,, Qin, H.P., Zhang J.Y., Hu Y.C. (2020). An in-situ measurement method of evapotranspiration from typical LID facilities based on the three-temperature model. Journal of Hydrology. 588, https://doi.org/10.1016/j.jhydrol.2020.125105
l Cheng M., Qin, H.P., Fu G.T., He K.M. (2020). Performance evaluation of time-sharing utilization of multi-function sponge space to reduce waterlogging in a highly urbanizing area. Journal of Environmental Management. 269, doi.org/10.1016/j.jenvman.2020.110760
l He, K.M., Qin, H.P., Wang, F., Ding, W., Yin Y.X. (2020). Importance of the Submerged Zone during Dry Periods to Nitrogen Removal in a Bioretention System. Water, 12(3), 876; https://doi.org/10.3390/w12030876
l Li, S. X, Qin, H.P., Peng, Y.N., Khu, S.T.. (2019). Modelling the combined effects of runoff reduction and increase in evapotranspiration for green roofs with a storage layer. Ecological Engineering, 127:302-311.
l Chen, S.D., Qin, H.P., Zheng, Y., Fu, G.T.. (2019). Spatial variations of pollutants from sewer interception system overflow. Journal of Environmental Management, 233: 748–756
l Wang, C.S., Wang, F., Qin, H.P., Zeng, X.F., Li, X., Yu, S.. (2018). Effect of saturated zone on nitrogen removal processes in stormwater bioretention systems. Water, 10(2): 162.
l Zheng, Y., Chen, S.D., Qin, H.P., Jiao, J.J.. (2018). Modeling the spatial and seasonal variations of groundwater head in an urbanized area under Low Impact Development. Water, 10(6): 803.
l Cheng, M., Qin, H.P., He, K.M., Xu, H.L..(2018). Can floor-area-ratio incentive promote low impact development in a highly urbanized area?—A case study in Changzhou City, China. Frontiers of Environmental Science & Engineering, 12(2):8.
l Qin, H.P., Peng, Y.N., Tang, Q.L., Yu, S.L.. (2016). A HYDRUS model for irrigation management of green roofs with a water storage layer, Ecological Engineering, 95:399-408.
l Qin, H.P., He, K.M., Fu, G.T.. (2016). Modeling middle and final flush effects of urban runoff pollution in an urbanizing catchment. Journal of Hydrology, 534:638–647.
l Qin, H.P., Tang, Q.L., Wang, L.Y., Fu, G.T.. (2015). The impact of atmospheric wet deposition on roof runoff quality in an urbanized area. Hydrology Research, 46 (6):880-892.
l Yang, L., Scheffran J., Qin H.P., You, Q.L.. (2015). Climate-related flood risks and urban responses in the Pearl River Delta, China. Regional Environmental Change, 15(5):379-391.
l Qin, H.P., Su, Q., Khu, S.T., Tang, N.. (2014). Water quality changes during rapid urbanization in the Shenzhen River Catchment: an integrated view of socio-economic and infrastructure development. Sustainability, 6(10):7433-7451.
l Su, Q., Qin, H.P., Fu, G.T.. (2014). Environmental and ecological impacts of water supplement schemes in a heavily polluted estuary. Science of the Total Environment, 472:704-711.
l Qin, H.P., Khu, S.T., Li, C.. (2014). Water exchange effect on eutrophication in landscape water body supplemented by treated wastewater. Urban Water Journal, 11(2):108-115.
l Qin, H.P., Li, Z.X., Fu, G.T.. (2013). The effects of low impact development on urban flooding under different rainfall characteristics. Journal of Environmental Management, 129:577-585.
l Qin, H.P., Tan, X.L., Fu, G.T., Zhang, Y.Y., Huang, Y.F.. (2013). Frequency analysis of urban runoff quality in an urbanizing catchment of Shenzhen, China. Journal of Hydrology, 496:79-88.
l Qin, H.P., Jiang, J.J., Fu, G.T., Zheng, Y.. (2013). Optimal water quality management considering spatial and temporal variations in a tidal river. Water Resources Management, 27:843–858.
l Qin, H.P., Su, Q., Khu, S.T.. (2013). Assessment of environmental improvement measures using a novel integrated model: A case study of the Shenzhen River catchment, China, Journal of Environmental Management, 114:486-495.
l Qin, H.P., Su, Q., Khu ,S.T..(2011). An integrated model for water management in a rapidly urbanizing catchment. Environmental Modelling & Software. 26:1502-1514.
l Qin H.P., Khu S.T., Yu X.Y..(2010). Spatial variations of storm runoff pollution and their correlation with land-use in a rapidly urbanizing catchment in China. Science of the Total Environment, 408:4613-4623.
l Qin, H. P., Ni, J. R., and Borthwick, A. G. L.. (2002). Harmonized optimal post-reclamation coastline for Deep Bay, China. Journal of Environmental Engineering - ASCE, 128(6):552-561.
l Ni, J. R., Borthwick, A. G. L., and Qin, H. P..(2002). Integrated Approach to Determining Post- reclamation Coastlines. Journal of Environmental Engineering - ASCE, 128(6), 543-551.
l Ni, J. R. and Qin, H. P.. (2001). Impact of River Realignment and Land Reclamation on Flood Control and Ecological Habitat in River-estuary-bay System. Water International – IWRA, 26 (2):206-214.
l 林博智, 叶雨笑, 张煜, 秦华鹏 (2024). 城市路面径流水量水质原位自动监测系统研究. 中国给水排水. 40(11), 121-127.
l 叶裕佳, 秦华鹏, 毛俊祺 (2023). 城市立交桥洞内涝过程的精细化模拟研究. 北京大学学报(自然科学版), 59(1), 105-114.
l 郑妍妍, 秦华鹏. (2022). 低影响开发设施组合的水文模拟及不确定性分析. 中国给水排水, 38(1), 114-121
l 银翼翔, 秦华鹏, 余淑琦, 郑妍妍, 何康茂 (2022). 低影响开发小区降雨径流的滞留与滞后效应.深圳大学学报(理工版). 39(2):142-151.
l 吴俊毅, 秦华鹏. (2021) 基于一二维耦合内涝模型的城市道路积水来源量化分析. 北京大学学报(自然科学版).57(4):716-722
l 程鹏, 李明远, 楼凯, 秦华鹏. (2020). 深圳河湾流域溢流污染规律及其对海湾水质影响. 北京大学学报(自然科学版)
l 李笑玥,秦华鹏,王凡,银翼翔 (2021).生物滞留池微生物种群的硝化反硝化功能研究——以深圳市为例. 深圳大学学报理工版. 38(1): 36-44
l 胡尹超,秦华鹏,林子璇 (2020). 深圳绿色屋顶雨水滞留效应变化及其影响因素. 深圳大学学报理工版. 37(4):347-354.
l 喻一, 宋芳, 赵志杰, 秦华鹏, 段余杰, 姚丽娟,王政君. (2020). 深圳河河口近10年典型污染物通量变化研究. 北京大学学报(自然科学版), 56(3):460-470
l 张静怡, 秦华鹏, 翟艳云(2019). 渗透铺装蒸发强度的动态变化规律及影响因素分析. 北京大学学报(自然科学版), ,55(5),934-940
l 宋芳, 秦华鹏, 陈斯典, 赵志杰. (2019). 深圳河湾流域水污染源解析研究. 北京大学学报(自然科学版), 55(2):317-328.
l 邢英华, 程翔, 秦华鹏, 赵志杰. (2018). 基于HSPF的绿色基础设施水文效应模拟——以大浪河流域为例. 北京大学学报(自然科学版), 54(5):1053-1059.
l 黎雪然, 王凡, 秦华鹏, 曾祥飞. (2018). 雨前干旱期对生物滞留系统氮素去除的影响. 环境科学与技术, 41(3): 118-123.
l 张香丽, 赵志杰, 秦华鹏, 江燕. (2018). 常州市不同下垫面污染物冲刷特征. 北京大学学报(自然科学版), 54(3): 644-654.
l 郑明凤, 陈斯典, 秦华鹏, 冷科明, 张丽. (2017). 降雨径流污染对深圳湾富营养化影响的模拟研究. 中国给水排水, 33(9):133-138.
l 彭跃暖, 秦华鹏, 王传胜, 黎雪然. (2017). 蓄水层设置与植物选择对绿色屋顶蒸散发的影响. 北京大学学报(自然科学版), 53 (4) :758-764.
l 江燕, 秦华鹏, 肖鸾慧, 何康茂, 赵志杰. (2017).常州不同城市用地类型地表污染物累积特征. 北京大学学报(自然科学版), 53(3):519-528.
l 陈德坤, 秦华鹏, 徐宏亮, 张香丽. (2017). 城市屋面与路面的遥感提取及污染物累积分析. 环境科学与技术, 40(2):91-96.
l 秦华鹏,唐女,唐巧玲. (2016). 蓄水层对绿色屋顶径流削减能力的影响分析. 中国给水排水, 32(13):132-135.
l 程翔, 赵志杰, 秦华鹏等. (2016). 漠阳江流域水环境容量的时空分布特征研究. 北京大学学报(自然科学版), 52(3):505-514.
l 王力玉,秦华鹏,谭小龙等. (2013). 深圳大气湿沉降对典型屋面径流水质的影响. 环境科学与技术, 36(2): 60-64.
l 李卓熹, 秦华鹏, 谢坤. (2012). 不同降雨条件下低冲击开发的水文效应分析. 中国给水排水, 28(21):37-41.
l 李畅, 秦华鹏, 张盈盈, 王雯雯. (2011). 不同季节中水回用于景观水体的藻类增长模拟. 环境科学与技术, 34(5):47-51.
l 郑莹 秦华鹏 (2011). 基于GA的感潮河流水污染控制多目标优化. 环境科学与技术, 34(3):134-139.
l 李畅, 秦华鹏, Soon-Thiam Khu, 王波. (2010). 中水回用对社区景观水体叶绿素a变化的影响. 中国环境科学, 30(10): 1338-1343.
l 韩龙,秦华鹏,鲁南,胡嘉东.(2010). 基于数字流域的水质综合管理决策支持系统——以深圳石岩水库流域为例. 环境科学与技术, 33(5):196-205
l 余香英,秦华鹏,黄跃飞.(2010). 基于IHACRES和GLUE的降雨径流过程模拟. 中国给水排水, 26(3): 57-61.
l 苏琼, 秦华鹏, 赵智杰. (2009). 产业结构调整对深圳河流域供需水平衡与水质改善影响的模型分析. 中国环境科学, 29(7): 767-772.
l 秦华鹏, 王晟. (2005). 感潮河流环境需水量预测及敏感性分析——以深圳河为例. 环境科学学报, 25(7): 936-941.
l 倪晋仁, 秦华鹏. (2003). 填海工程对潮间带湿地生境损失的影响评估. 环境科学学报. 23(3), 345-349
l 秦华鹏, 倪晋仁. (2002). 确定海湾填海优化岸线的综合方法. 水利学报, 8:35-42.
l 秦华鹏, 倪晋仁, 李义天. (2002). 基于泥沙数学模型的海湾填海岸线选择. 泥沙研究, 3:52-58.
l 秦华鹏,倪晋仁,梁林. (2002). 基于水动力学数学模型的海湾填海岸线选择. 水动力研究与进展(A辑), 17(1):92-100.
l 倪晋仁, 秦华鹏, 赵智杰(2001). 基于水质模型的海湾填海岸线选择. 环境科学学报, 21(6):684-688.
主要学术书籍
l 《深圳海绵城市建设的探索与实践》,科学出版社,主编,2021
l 《城市水系统与碳排放》,科学出版社,主编,2014
l 《深圳河湾水系水质改善策略研究》,科学出版社,副主编,2007